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Executive Summary 
 

In this document, the details of a collection of three apps that simulate the dynamics of 

neuromorphic nanophotonic devices are presented. In particular, we are interested in 

reproducing the generation and transmission of excitable optical pulses in artificial nano-

optoelectronic spiking neurons. The structure of the latter is based upon nanoscale resonant 

tunnelling diode (RTD) elements coupled to either laser diodes (LD) and photodetector (PD) 

components forming respectively spiking transmitter (TX) and receiver (RX) modules. The three 

apps developed account respectively for a single RTD-LD node acting as a spiking optoelectronic 

neuron, a network made of two RTD-LD nodes connected via a photodetector (PD) and at last 

another two-node network with an additional (recurrent) connection in the reverse direction 

with a delay line. These apps are available in the ChipAI Project website 

(https://www.chipai.eu/neuromorphic-simulator) to be used by other researchers/stakeholders 

for them to have an understanding on how optical pulses (spikes) are generated in these systems, 

and how these are affected by the systems’ parameters and specifications. These apps will 

therefore contribute to disseminate in a practical, interactive way the project’s research concepts 

and outputs, as well as be a tool for other scientists to use them in their own research. 

The document is organized as follows. First, the theoretical models that reproduce the dynamics 

of the nano-optoelectronic devices are explained, as well as the proper configuration to elicit 

excitability and pulse generation in them. Next, the numerical methods that integrate those 

models and that are internally implemented in the apps are discussed. Finally, the graphical 

interface and functions of the apps are detailed, and some examples of performance are provided. 
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1. Introduction 

In the last few years, the fields of Artificial Intelligence (AI) and Machine Learning (ML) have 

experienced a significant growth. New revolutionary algorithms are being developed which are 

rapidly finding applications in both industry and academic research. A main challenge these 

methodologies have met, however, is the fact that they have been traditionally implemented using 

conventional computers based on the Von Neumann architecture [1] (and built upon CMOS-based 

electronic circuitry technology [2]). This was not purposely-designed to work with the neural 

network algorithms AI and ML systems rely on, resulting on high-energy consumption, long 

waiting times and bandwidth limitations. 

Several efforts are being carried out nowadays to develop new neuromorphic computing 

processors whose fundamental units –like biological neurons of the brain– process and transmit 

bits of information in the form of spikes that are generated at arbitrary times. The term 

‘neuromorphic’ is used here as these processors aim at mimicking the way biological neural 

circuits operate in the brain. In addition to a more continuous nature, and therefore, more 

expressiveness of information than binary coding, spike signalling is robust in the presence of 

noise and ensures low power consumption since energy is spent only at very specific and short 

moments of time when spikes are triggered. 

Examples of neuromorphic processors include the IBM TrueNorth™ [3], the Intel Loihi 2™ [4], the 

BRAIN Initiative™ [5] and the Innatera™ chip [6]. This generation of neuromorphic processors 

have been developed all using electronic-based technologies. The ChipAI Project intends to 

contribute to the field of neuromorphic computing with novel nano-optoelectronic 

implementations based on double barrier quantum well resonant tunnelling diodes (DBQW-

RTD), laser diodes (LD) and Photodetectors (PD). ChipAI therefore will permit to capitalise on the 

inherent benefits of using light signals (instead of electronic currents) for operation, including 

high-speed, reduced energy consumption, high bandwidths, etc. In ChipAI’s vision the RTD acts 

as the excitable part of the neuron which, very much like their biological counterparts, fires a 

spike when perturbed with an external stimulus, provided that such stimulus is above a certain 

energy threshold. Otherwise, the RTD (neuron) does not fire [7]. The ChipAI team has carried out 

extensive research on the dynamics on both RTD and LD-based circuits, and contributed with 

theoretical and numerical results [8,9,10] in order to understand the suitable configurations for 

nano-optoelectronic neurons to behave as an excitable generator of optical pulses (spikes). 

In this document, three computer applications developed as part of the ChipAI Project that 

simulate spike generation and transmission in RTD-LD-based optoelectronic devices, are 

presented. These apps respectively account for a single optoelectronic node, a network made of 

two optoelectronic nodes connected via a photodetector (PD), and the same network with an 

additional connection in the reverse direction in the form of a delay line. Delayed dynamics allow 
using a single neuron in neuromorphic algorithms as multiple virtual nodes at different intervals 

of time [6]. The apps are intended to be available on the ChipAI Project website 

(https://www.chipai.eu/neuromorphic-simulator) and allow users to specify physical and 

numerical parameters, run simulations and export generated data as spread sheet files. 

The document is structured as follows. In chapter 2, the theoretical models that reproduce the 

dynamics of the devices emulated by the apps are presented and their configuration and 

behaviour as excitable optoelectronic spike generators are discussed. In chapter 3, the numerical 

methods implemented in the apps to simulate the theoretical models are explained. In chapter 4, 

the graphical user interfaces (GUI) and functionalities of the apps are discussed, together with 
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some performance examples. Finally, Chapter 5 presents the conclusions and prospective steps 

in the app development.  
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2. Neuromorphic circuits modelling 

In this section, the neuromorphic circuits to be simulated by the apps are discussed, their 

mathematical models are described and the proper configurations for spike generation and 

propagation are demonstrated. 

2.1 Neuromorphic transmitter node 

An optoelectronic transmitter is made of a double barrier quantum well resonant tunnelling 

diode (DBQW-RTD or RTD for short) connected to a nanolaser diode (nanoLD or LD). The RTD 

functions as an excitable system that responds to an external (above-threshold) perturbation 

(e.g., a square voltage pulse) with a single ultrafast current spike. This current spike is injected 

into the LD which translates it into an optical spike. This permits to use light spikes for signalling 

as well as to avoid the power dissipation typical of electrical interconnections. In our design, the 

RTD and the LD are monolithically integrated in a nanopillar structure with highly reduced 

footprint, as illustrated in Fig. 1. 

         

Fig. 1. (a) Schematics of the neuromorphic RTD-LD nanopillar (figure taken from [11]). (b) Excitable 

optical spike generation in the RTD-LD optoelectronic circuit. 

The RTD-LD system is described by Eqs. (1-4) below, where Eqs. (1,2) and (3,4) describe 

respectively the dynamics of the RTD and the LD, 

 𝐶
𝑑𝑉

𝑑𝑡
= 𝐼 − 𝑓(𝑉) + 𝜎𝜉𝑉(𝑡), (1) 

 𝐿
𝑑𝐼

𝑑𝑡
= 𝑉0 + 𝑉𝑚(𝑡) − 𝑉 − 𝑅𝐼, (2) 

 
𝑑𝑆

𝑑𝑡
= (𝛾𝑚(𝑁 − 𝑁0) −

1

𝜏𝑝
) 𝑆 + 𝛾𝑚𝑁 + √𝛾𝑚𝑁𝑆𝜉𝑆(𝑡), (3) 

 
𝑑𝑁

𝑑𝑡
=

𝐼0 + 𝐼

𝑞𝑒
− (𝛾𝑚 + 𝛾𝑙 + 𝛾𝑛𝑟)𝑁 − 𝛾𝑚(𝑁 − 𝑁0)𝑆. (4) 

2.1.1 Electrical part 

Eqs. (1,2) account for the electrical part of the circuit and are derived from Kirchhoff laws. Here, 

𝑉 and 𝐼 are the voltage and current across the DBQW. 𝑅, 𝐿, 𝐶 are the circuit’s intrinsic resistance, 

inductance and capacitance, respectively. For the rest of this document, these values will be set 

at 𝑅 = 10 Ω, 𝐶 = 2 fF and 𝐿 = 126 nH (unless stated otherwise). 𝑉0 is the input bias voltage and 
𝑉𝑚(𝑡) is an input modulation voltage (e.g., a train of square voltage pulses). The fluctuations in 

the systems are represented by additive noise, with 𝜉𝑉(𝑡) being a time-uncorrelated white noise 

function and 𝜎 being the noise intensity. 𝑓(𝑉) is the nonlinear, N-shaped current-voltage 

characteristic of the RTD. Schulman [12] provides an analytical expression for this curve, 

(b) (a) 
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 𝑓(𝑉) = 𝑎 ln (
1 + 𝑒(𝑏−𝑐+𝑛1𝑉)𝑞/𝑘𝑇

1 + 𝑒(𝑏−𝑐−𝑛1𝑉)𝑞/𝑘𝑇
) [

𝜋

2
+ tan−1 (

𝑐 − 𝑛1𝑉

𝑑
)] + ℎ(𝑒𝑛2𝑞𝑉/𝑘𝑇 − 1) (5) 

The current-voltage characteristic 𝑓(𝑉) defined in Eq. 5 has a single region of negative differential 

conductance embedded between two regions of positive differential conductance. These regions 

are delimited by peak and valley points. The shape of the curve is tuned by the parameters 

𝑎, 𝑏, 𝑐, 𝑑, 𝑛1, 𝑛2, ℎ as well as the electron charge, 𝑞 = 1.602 × 10−19 C, the Boltzmann’s constant, 

𝑘 = 1.38 × 10−23 J/°K, and the room temperature, 𝑇 = 300°K. 

Two current-voltage characteristics will be considered in this document; an overall smooth curve 

and a sharp curve with a pointed peak followed by a sudden drop in the current and a wide valley. 

The curves are illustrated in Fig. 2, together with the voltages at the peak and valley points. The 

parameters that reproduce the curves are shown in Table 1. 

       

Fig. 2. Examples of RTD current-voltage characteristic curves defined according to Eq. 5. (a) Smooth curve. 

(b) Sharp curve. The parameter values for each curve are summarized in Table 1. The region of negative 

differential conductance is coloured in grey. Voltages at the peak and valley point are also included. 

 𝑎 [µA] 𝑏 [mV] 𝑐 [mV] 𝑑 [mV] 𝑛1 𝑛2 ℎ [µA] 
a) smooth curve 137.5 33 113 2.8 0.185 0.00845 34.2 
b) sharp curve –55 33 113 –2800 0.185 0.045 180 

Table 1. Parameter values of the RTD current-voltage characteristic curves illustrated in Fig. 1.1. 

It is well known [13,14,15,16] that an RTD biased in the region of negative differential 

conductance exhibits self-oscillations (i.e., stable limit cycle). Otherwise, the RTD responds with 

a fixed output given by the intersection of the RTD current-voltage characteristic and the circuit’s 

load line, 𝑉0 − 𝑉 − 𝑅𝐼 = 0. The details of the transition between these two responses are 

explained in the reference [8]. These works also state that if the stiffness coefficient 𝜇 = √𝐶/𝐿 is 

sufficiently small, the self-oscillation response exhibits then slow-fast dynamics and a stiff limit 

cycle orbit resulting in periodical spike firing (Fig. 2). 

The RTD is configured as an excitable spike generator by setting its bias operation point in the 

proximity to the region of negative conductance, yet slightly outside, and injecting a positive or 

negative square voltage pulse, depending on whether the bias is set close to the peak or the valley 

points in the I-V characteristic of the device. This is equivalent to displacing briefly the load line 

into the region of negative conductance, where spike firing is produced. Fig. 4 summarizes the 

responses of a valley-biased RTD to a variety of negative square voltage pulses with 50 ps in 

temporal width and amplitudes ranging from 10 to 100 mV. There is a threshold for the voltage 

pulse amplitude at about 50 mV beyond which the RTD responds with a single spike firing event 

before returning to the stable fixed point. On the other hand, responses to sub-threshold voltage 
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pulses are negligible. This confers to the RTD response the all-or-none characteristic typical of 

excitable systems [7]. Similarly, a peak-biased RTD responds to a positive square voltage pulse 

with a negative current spike, provided that such voltage pulse has a large enough amplitude. For 

both biases, the current spike has an amplitude of about 280 µA, determined by the peak and 

valley of the I-V characteristic. The duration of the excitable spike is roughly estimated at 250 ps. 

       

       

2.1.2 Optical part 

Eqs. (3,4) account for the optical part of the circuit and are the standard rate equations that 

describe the dynamics for the photon number and carrier population in an LD [17]. 𝑆 is the photon 

number and 𝑁 is the carrier number. The parameter values are set to describe a low-Q metal 

cavity nanolaser and will be fixed for the rest of this document (unless stated otherwise). 𝑁0 =

5 × 105 is the transparency carrier number. 𝜏𝑝 = 5 × 10−3 s is the photon lifetime. 𝛾𝑚 = 107 s−1 

and 𝛾𝑙 = 109 s−1 are the Purcell enhanced spontaneous emission coefficients into the lasing mode 

and leaky mode, respectively. 𝛾𝑛𝑟 = 2 × 109 s−1 is the non-radiative spontaneous emission 
coefficient. The fluctuations in the system are represented by a nonlinear multiplicative noise 

term, with 𝜉𝑆(𝑡) being a time-uncorrelated white noise function. 𝐼0 is an additional input bias 

current injected into the nanolaser. 

Fig. 3. Simulation of Eqs. (1,2) with 𝑉0 = 700 mV, 

𝜎 = 0, sharp current-voltage characteristic and no 

modulation voltage (i.e., 𝑉𝑚 = 0). The system 

exhibits self-oscillations and stages of slow and 

fast dynamics. (a) Phase space. (b) Output voltage 

over time. (c) Output current over time. The 

system’s response, the I-V characteristic and the 

circuit’s load line are coloured in blue, cyan and 

yellow, respectively. 

Fig. 4. Simulations of Eqs. (1,2) with 𝑉0 = 750 mV, 

𝜎 = 0, sharp current-voltage characteristic and 

modulated with 50 ps long negative square 

voltage pulses of different amplitudes. (a) Pulse 

profiles. (b) System’s current response to each 

input pulse. (c) System’s response to input pulses 

on the phase space. Sub (supra) threshold pulses 

and their responses are coloured in dark (light) 

shades of green and blue, respectively. 



Tutorial – Neuromorphic system simulator free-software  
 

ChipAI – 828841  10 

 

         

The LD connected to a DC current source 𝐼0 (i.e., no RTD current 𝐼(𝑡)) emits light provided that 𝐼0 

is above a threshold value which, for the parameters chosen above, is at 𝐼𝑡ℎ = 337.54 µA. As 

illustrated in Fig. 5, the emission intensity is directly proportional to the current difference (i.e., 
〈𝑆〉 ~ 𝐼0 − 𝐼𝑡ℎ) while there is no emission if 𝐼0 < 𝐼𝑡ℎ. This type of transition is known as 

transcritical bifurcation [18]. 

2.1.3 Integrated optoelectronic neuron 

An LD injected with current spikes generated by a valley-biased RTD will respond with optical 

pulses (spikes) provided that the input bias current 𝐼0 is properly tuned. The nature of the output 

optical spikes will depend on the characteristics of both the RTD and the LD. The idea is to 

displace the RTD output current 𝐼(𝑡) in such a way that its rest value remains under the LD 

threshold current 𝐼𝑡ℎ while the current spike surpasses it. As a result, the LD is expected to emit 

only when the current spike takes place. 

Figs. 6 and 7 show the process’ steps within the circuit with the sharp RTD current-voltage 

characteristic. 500 simulations are run in each figure. As a consequence of the noise in the system, 

the responses are non-identical. The moments of time when a spike is triggered in each response, 

as well as their profiles over time, differ slightly. On that regard, we refer to the responses as 

incoherent. A supra-threshold negative square voltage pulse is injected into the valley-biased 

RTD, which responds with a positive current spike. As shown in Fig. 4 (b), the rest value and 
maximal value of 𝐼(𝑡) are approx. 75 and 340 mV, respectively, given by the peak and valley of 

the I-V characteristic. These values are under or slightly above the LD threshold, 𝐼𝑡ℎ = 337.54. 

Therefore, this spike will not elicit an emission from the LD. Hence, an additional input bias 
current is required. In Fig. 6, a bias 𝐼0 = 214 µA is added to 𝐼(𝑡), increasing the rest and maximal 

values of the total current injected up to 290 and 570 µA, respectively. Expectedly, the LD 

responds to this configuration with an optical pulse (spike) at its output. This pulse is very short, 

with a FWHM of about 50 ps. Its response delay (relative to the square voltage pulse) is 

approximately 150 ps. These features are changed when a different bias current is chosen. Fig. 7 

shows the LD response to the same RTD configuration and 𝐼0 = 250 µA. With an increased bias, 

the rest value of the total current injected into the LD is now closer to the threshold. The LD 

response pulse has now a shorter delay (~100 ps) but longer FWHM, higher amplitude and hence 

higher energy. The dramatic change in the delay response is consequence of a phenomenon called 

critical slowing down, typical in transcritical bifurcations [19,20,21]. In simple terms, the farther 

the input current is initially under the threshold, the longer the LD takes to emit once the input 

current surpasses the threshold. All the above findings are similar when the smooth I-V 

characteristic is chosen. 

Fig. 5. Mean photon number in the LD with 

no RTD modulation (i.e., Eqs. (3,4) with 𝐼 =

0) as a function of input bias current. Red 

line: stable equilibrium in the deterministic 

system (i.e., 𝜉𝑆 = 0). Orange dots: time-

average estimated from numerical 

simulations of the stochastic system, with 

error bars accounting for standard 

deviation. Inset: relative difference 

between both estimations. 
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2.2 Neuromorphic transmitter-receiver (Tx-Rx) network 

In this section, the propagation of optical pulses (spikes) along two neuromorphic RTD-LD nodes 

connected via a photodetector (PD) is studied. The full system is described by the following 

equations, 

 𝐶
𝑑𝑉1

𝑑𝑡
= 𝐼1 − 𝑓(𝑉1) + 𝜎𝜉𝑉

1(𝑡), (6) 

 𝐿
𝑑𝐼1

𝑑𝑡
= 𝑉0 + 𝑉𝑚(𝑡) − 𝑉1 − 𝑅𝐼1, (7) 

 
𝑑𝑆1

𝑑𝑡
= (𝛾𝑚(𝑁1 − 𝑁0) −

1

𝜏𝑝
) 𝑆1 + 𝛾𝑚𝑁1 + √𝛾𝑚𝑁1𝑆1𝜉𝑆

1(𝑡), (8) 

 
𝑑𝑁1

𝑑𝑡
=

𝐼0 + 𝐼1

𝑞𝑒
− (𝛾𝑚 + 𝛾𝑙 + 𝛾𝑛𝑟)𝑁1 − 𝛾𝑚(𝑁1 − 𝑁0)𝑆1, (9) 

 𝐶
𝑑𝑉2

𝑑𝑡
= 𝐼2 − 𝑓(𝑉2) + 𝜅𝑆1(𝑡) + 𝜎𝜉𝑉

2(𝑡), (10) 

 𝐿
𝑑𝐼2

𝑑𝑡
= 𝑉0 − 𝑉2 − 𝑅𝐼2, (11) 

 
𝑑𝑆2

𝑑𝑡
= (𝛾𝑚(𝑁2 − 𝑁0) −

1

𝜏𝑝
) 𝑆2 + 𝛾𝑚𝑁2 + √𝛾𝑚𝑁2𝑆2𝜉𝑆

2(𝑡), (12) 

 
𝑑𝑁2

𝑑𝑡
=

𝐼0 + 𝐼2

𝑞𝑒
− (𝛾𝑚 + 𝛾𝑙 + 𝛾𝑛𝑟)𝑁2 − 𝛾𝑚(𝑁2 − 𝑁0)𝑆2. (13) 

Eqs. (6-9) account for the first node, referred to as transmitter (Tx), while Eqs. (10-13) account 

for the second node, called receiver (Rx). Fig. 8 illustrates the transmission of optical pulses in the 
network. The optical output from the Tx LD (𝑆1(𝑡)) is injected into the Rx PD, which in response 

returns a current 𝜅𝑆1(𝑡) injected into the Rx RTD. In order to generate and transmit excitable 

Fig. 6. 500 Simulations of Eqs. (1-4) with 𝐼0 = 214 

µA, 𝑉0 = 750 mV, 𝜎 = 2.5 × 10−12 [SI], sharp 

current-voltage characteristic and modulated 

with a single 50 ps long, 100 mV deep negative 

voltage pulse. (a) RTD total input voltage. (b) LD 

total input current. The dashed line marks the LD 

current threshold. (c) LD optical output. 

Fig. 7. 500 Simulations of Eqs. (1-4) with 𝐼0 = 250 

µA, 𝑉0 = 750 mV, 𝜎 = 2.5 × 10−12 [SI], sharp 

current-voltage characteristic and modulated 

with a single 50 ps long, 100 mV deep negative 

voltage pulse. (a) RTD total input voltage. (b) LD 

total input current. The dashed line marks the LD 

current threshold. (c) LD optical output. 
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optical pulses, both RTDs are biased close to the valley of the current-voltage characteristic (𝑉0) 

and both LDs are biased under the emission threshold (𝐼0). The Tx RTD is perturbed with a 

negative square voltage pulse, like in subsection 2.1.3. Under this configuration, the Tx RTD 

responds with a current spike, to which the Tx LD responds with an optical pulse. The duration 

and length of the optical pulse are tuned by the value of 𝐼0 (see Figs. 6 and 7). 

 

Fig. 8. Generation and transmission of optical spikes in the two-node RTD-LD optoelectronic network. 

The PD conversion coefficient 𝜅 must be chosen properly to elicit an excitable response from the 

Rx RTD. If 𝜅 is too small, the Rx PD current pulse will be sub-threshold. If 𝜅 is too big, the 

fluctuations in the rest state may elicit excitable responses randomly at undesired moments. The 

proper value of 𝜅 depends of the shape of the current-voltage characteristic. For the smooth and 

sharp curves defined in subsection 2.1.1, proper values for pulse transmission are 𝜅 = 0.02 µA 

and 𝜅 = 0.05 µA, respectively. 

Figs. 9 (10) shows that for 𝐼0 = 214 µA (250 µA), short (long) optical pulses are transmitted. The 

optical pulse from the Tx is injected into the Rx PD, which responds with a suprathreshold current 

pulse.  Since the Rx RTD is also biased close to the valley, it also responds with a spike. 

       

       

These spikes are almost identical to those from the Tx RTD (Figs. 6 and 7), given the all-or-nothing 

nature of the excitable response. These current spikes however, are less coherent because the 

Fig. 9. 500 Simulations of Eqs. (6-13) with 𝐼0 =

214 µA, 𝑉0 = 750 mV, 𝜅 = 0.05 µA, 𝜎 = 2.5 ×

10−12 [SI], sharp current-voltage characteristic 

and modulated with a single 50 ps long, 100 mV 

deep negative voltage pulse. (a) transmitter LD 

optical output. (b) Receiver LD total input current. 

The dashed line marks the LD current threshold. 

(c) Receiver LD optical output. 

Fig. 10. 500 Simulations of Eqs. (6-13) with 𝐼0 =

250 µA, 𝑉0 = 750 mV, 𝜅 = 0.05 µA, 𝜎 = 2.5 ×

10−12 [SI], sharp current-voltage characteristic 

and modulated with a single 50 ps long, 100 mV 

deep negative voltage pulse. (a) transmitter LD 

optical output. (b) Receiver LD total input current. 

The dashed line marks the LD current threshold. 

(c) Receiver LD optical output. 
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optical input form the Tx is incoherent itself (in contrast with the noiseless voltage pulse used to 

drive the Tx, identical in all simulations). The Rx LD responds to these current spikes with the 

same optical pulses that left the Tx LD (since both LDs are biased at the same current 𝐼0). The Tx 

optical response seems to be slightly less coherent than that from the Rx. More notoriously, the 

response delay in the two-node network is longer than that in the single node (since the 

transmission of pulses involves more steps and more delays are accumulated) and it is longer for 

short pulses. 

2.3 Neuromorphic transmitter node with bidirectional communication 

In this section, a delay line is added to the RTD-PD two-node network. This delay line injects the 

optical output from the Rx LD back into the Tx RTD via a photodetector (PD). This is modelled by 

adding a term 𝜅𝑆2(𝑡 − 𝜏) in Eq. 6, 

 𝐶
𝑑𝑉1

𝑑𝑡
= 𝐼1 − 𝑓(𝑉1) + 𝜅𝑆2(𝑡 − 𝜏) + 𝜎𝜉𝑉

1(𝑡), (14) 

 𝐿
𝑑𝐼1

𝑑𝑡
= 𝑉0 + 𝑉𝑚(𝑡) − 𝑉1 − 𝑅𝐼1, (15) 

 
𝑑𝑆1

𝑑𝑡
= (𝛾𝑚(𝑁1 − 𝑁0) −

1

𝜏𝑝
) 𝑆1 + 𝛾𝑚𝑁1 + √𝛾𝑚𝑁1𝑆1𝜉𝑆

1(𝑡), (16) 

 
𝑑𝑁1

𝑑𝑡
=

𝐼0 + 𝐼1

𝑞𝑒
− (𝛾𝑚 + 𝛾𝑙 + 𝛾𝑛𝑟)𝑁1 − 𝛾𝑚(𝑁1 − 𝑁0)𝑆1, (17) 

 𝐶
𝑑𝑉2

𝑑𝑡
= 𝐼2 − 𝑓(𝑉2) + 𝜅𝑆1(𝑡) + 𝜎𝜉𝑉

2(𝑡), (18) 

 𝐿
𝑑𝐼2

𝑑𝑡
= 𝑉0 − 𝑉2 − 𝑅𝐼2, (19) 

 
𝑑𝑆2

𝑑𝑡
= (𝛾𝑚(𝑁2 − 𝑁0) −

1

𝜏𝑝
) 𝑆2 + 𝛾𝑚𝑁2 + √𝛾𝑚𝑁2𝑆2𝜉𝑆

2(𝑡), (20) 

 
𝑑𝑁2

𝑑𝑡
=

𝐼0 + 𝐼2

𝑞𝑒
− (𝛾𝑚 + 𝛾𝑙 + 𝛾𝑛𝑟)𝑁2 − 𝛾𝑚(𝑁2 − 𝑁0)𝑆2. (21) 

Here, 𝜏 is the time associated to the delay line. Fig. 11 illustrates the cyclical propagation of pulses 

along the circuit. As explained in section 2.2, a two-node optoelectronic network with both RTDs 

biased close to the valley of the current-voltage characteristic and both LDs biased under the 

emission threshold responds to a single negative square voltage pulse with an optical pulse. This 

pulse is now sent back to the Tx RTD through the delay line and Tx PD, and arrives with a delay 

time of approximately 𝜏. Assuming that 𝜏 is significantly longer than the refractory time of the 

excitable response, the delayed pulse will elicit a second excitable response from the Tx RTD, 

which will ultimately lead to a second optical pulse from the Rx. This new pulse is also sent to the 

Tx with a delay, which leads to the emission of a third pulse by the Rx. In other words, the injection 

of a single suprathreshold voltage pulse injected into the Rx RTD produces the emission of optical 

pulses periodically. This delayed synapsis has potential applications in memory storage, as 

discussed by Romeira et al [10]. Indeed, it is valid to say that the same bit of information is 

circulating periodically around the RTD-PD two-node network. On that regard, the propagation 

of such a bit is equivalent to that in an indefinitely long sequence of nodes. 
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Fig. 11. Generation and transmission of optical spikes in the optoelectronic network with a delay line. 

 

Fig. 12. 100 Simulations of Eqs. (14-21) with 𝐼0 = 214 µA, 𝑉0 = 750 mV, 𝜅 = 0.05 µA, 𝜎 = 2.5 × 10−12  [SI], 

𝜏 = 2 ns, sharp current-voltage characteristic and injected with a single 50 ps long, 100 mV deep negative 

voltage pulse. (a) transmitter RTD total input voltage. (b) Transmitter LD optical output. (c) Receiver LD 

optical output. 

 

Fig. 13. 100 Simulations of Eqs. (14-21) with 𝐼0 = 250 µA, 𝑉0 = 750 mV, 𝜅 = 0.05 µA, 𝜎 = 2.5 × 10−12  [SI], 

𝜏 = 2 ns, sharp current-voltage characteristic and injected with a single 50 ps long, 100 mV deep negative 

voltage pulse. (a) transmitter RTD total input voltage. (b) Transmitter LD optical output. (c) Receiver LD 

optical output. 
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This is the principle behind another application of delayed synapsis in spiking neural networks, 

where a single node in the neuromorphic processor serves as multiple virtual nodes in a network 

algorithm [22]. Furthermore, the same bit propagation can also be emulated with a single 

optoelectronic node where the LD is connected to the PD and then the RTD with a delayed line 

(i.e., the node is connected to itself in autapsis). Such a system is modelled with four equations 

instead of eight, with the subsequent decrease of time and energy consumption in numerical 

simulations, in comparison with the two-node network discussed here. 

The pulse propagation process is however, not flawless, as illustrated in Figs. 12 and 13, where 

short and long pulses are generated respectively. In both cases, the delay time is set at 𝜏 = 2 ns. 

Nonetheless, pulses are emitted with a longer separation period (around 2.2 ns in the case of 

short pulses and 2.1 ns in the case of short pulses). This is attributed to the intrinsically delayed 

response of each node to supra-threshold perturbations, first discussed in subsection 2.1.3. Also, 

the pulse loses coherence as it is emitted again and again, in the sense that, when multiple 

simulations with same parameters and initial conditions are run, the time where the pulse is 

emitted is not exactly the same. This is notorious when all the responses are plotted together. The 

loss of coherence is attributed to the intrinsic noise in both the RTD and LD components. 

  



Tutorial – Neuromorphic system simulator free-software  
 

ChipAI – 828841  16 

 

3. Numerical simulation methods 

In this section, the numerical methods used in the apps are detailed. These methods have been 

coded on MATLAB™ and are based on semi-implicit integration. A uniform time partition 𝑡𝑛 =

𝑛 × Δ𝑡, 𝑛 ∈ ℕ0, is considered. A reliable level of accuracy is ensured by choosing a time step 𝑑𝑡 

much shorter than the inverse of the RTD tank frequency (𝜔𝑡𝑘 = 1/√𝐿𝐶, an estimation of the 

order of the self-oscillation frequency) and the LD photon lifetime, 

 Δ𝑡 ≪ √𝐿𝐶,    Δ𝑡 ≪ 𝜏𝑝. (22) 

For the rest of this report, the time step will be set at Δ𝑡 = 0.01 × min(√𝐿𝐶, 𝜏𝑝). However, 

variables are stored only every 0.5 ps in order to avoid excessive memory consumption. 

3.1 Integration method in the neuromorphic transmitter node 

3.1.1 Electrical part 

In order to recursively find the RTD output variables (𝑉, 𝐼) at times 𝑡𝑛, Eqs. (1,2) are integrated 

over the time interval [𝑡𝑛, 𝑡𝑛+1], 

 𝐶(𝑉𝑛+1 − 𝑉𝑛) = ∫ (𝐼 − 𝑓(𝑉)) 𝑑𝑡
𝑡𝑛+1

𝑡𝑛

+ 𝜎Δ𝑊𝑉
𝑛, 

(23) 

 

 𝐿(𝐼𝑛+1 − 𝐼𝑛) = ∫ (𝑉0 + 𝑉𝑚(𝑡) − 𝑉 − 𝑅𝐼) 𝑑𝑡
𝑡𝑛+1

𝑡𝑛

, 
(24) 

 

where 𝑊(𝑡) is a normalized Wiener process (i.e., Δ𝑊~Norm(0, Δ𝑡)). Integration over 𝐼 in Eq. 23 

is approximated by a trapezoidal estimation, 

 ∫ 𝐼 𝑑𝑡
𝑡𝑛+1

𝑡𝑛

≈
1

2
(𝐼𝑛 + 𝐼𝑛+1)Δ𝑡. (25) 

To approximate the integration over 𝑓(𝑉) as a linear expression with respect to 𝑉𝑛+1, 𝑉 is 

approximated as the secant line connecting 𝑉𝑛 and 𝑉𝑛+1. Then, 𝑓(𝑉) is expanded to the first order 

in 𝑡, 

 

∫ 𝑓(𝑉) 𝑑𝑡
𝑡𝑛+1

𝑡𝑛

≈ ∫ 𝑓(𝑉𝑛 +
𝑡

Δ𝑡
(𝑉𝑛+1 − 𝑉𝑛)) 𝑑𝑡

𝑡𝑛+1

𝑡𝑛

, 

(26)                                             ≈ ∫ (𝑓(𝑉𝑛) + 𝑓′(𝑉𝑛)
𝑡

Δ𝑡
(𝑉𝑛+1 − 𝑉𝑛))  𝑑𝑡,

𝑡𝑛+1

𝑡𝑛

 

                               ≈ (𝑓(𝑉𝑛) +
1

2
𝑓′(𝑉𝑛)(𝑉𝑛+1 − 𝑉𝑛)) Δ𝑡. 

After trapezoidal approximation of the integral in Eq. 24, Eqs. (23,24) now read, 

 𝐶(𝑉𝑛+1 − 𝑉𝑛) = (
1

2
(𝐼𝑛 + 𝐼𝑛+1) − (𝑓(𝑉𝑛) +

1

2
𝑓′(𝑉𝑛)(𝑉𝑛+1 − 𝑉𝑛))) Δ𝑡 + 𝜎Δ𝑊𝑉

𝑛, 

(27) 

 𝐿(𝐼𝑛+1 − 𝐼𝑛) = (𝑉0 +
1

2
((𝑉𝑚

𝑛 + 𝑉𝑚
𝑛+1) − (𝑉𝑛 + 𝑉𝑛+1) − 𝑅(𝐼𝑛 + 𝐼𝑛+1))) Δ𝑡.     

Eqs. 27 constitute a 2×2 system of linear equations from which 𝑉𝑛+1 and 𝐼𝑛+1 are found, 
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 𝑉𝑛+1 =
𝑑𝑛𝜀𝑛 − 𝑏𝑛𝜑𝑛

𝑎𝑛𝑐𝑛 − 𝑏𝑛𝑑𝑛
, 𝐼𝑛+1 =

−𝑐𝑛𝜀𝑛 + 𝑎𝑛𝜑𝑛

𝑎𝑛𝑐𝑛 − 𝑏𝑛𝑑𝑛
. (28) 

Where 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛, 𝜀𝑛, 𝜑𝑛 are given by, 

 𝑎𝑛 = −𝐶 −
1

2
𝑓′(𝑉𝑛)Δ𝑡, 𝑏𝑛 =

1

2
Δ𝑡, 𝑐𝑛 = − 

1

2
Δ𝑡, 𝑑𝑛 = − 

1

2
𝑅Δ𝑡, 

(29) 

 

 𝜀𝑛 = −𝐶𝑉𝑛 + (𝑓(𝑉𝑛) −
1

2
(𝑓′(𝑉𝑛)𝑉𝑛 + 𝐼𝑛)) Δ𝑡 − 𝜎Δ𝑊𝑉

𝑛, 

 𝜑𝑛 = −𝐿𝐼𝑛 + (
1

2
(𝑉𝑛 + 𝑅𝐼𝑛 − (𝑉𝑚

𝑛 + 𝑉𝑚
𝑛+1)) − 𝑉0) Δ𝑡.     

The initial conditions (n = 0) in the app integration algorithm are set at the equilibrium fixed 

point, which is found by substitution of all time-derivatives, noise and modulation in Eqs. (1,2) 

with zero, 

 𝐼 − 𝑓(𝑉) = 0, 
(30) 

 𝑉0 − 𝑉 − 𝑅𝐼 = 0. 

Eqs. 30 correspond to the intersection of the nullclines (see Figs. 3 and 4) and ultimately lead to 
a single equation, 𝑉0 − 𝑉 − 𝑅𝑓(𝑉) = 0, which can be solved numerically. The stability of the fixed 

point (or points) is determined by the associated eigenvalues, also calculated numerically. The 

stable fixed point with smallest 𝑉 will be chosen as initial condition. If there is no stable fixed 

point, the unstable fixed point with smallest 𝑉 will be chosen. 

3.1.2 Optical part 

The dynamics of the optical part in the optoelectronic node is accounted for simulations of the 

following equations, 

 
𝑑𝐸

𝑑𝑡
=

1 − 𝑖

2
(𝛾𝑚(𝑁 − 𝑁0) −

1

𝜏𝑝
) 𝐸 + √

1

2
𝛾𝑚𝑁(𝜉𝑥(𝑡) + 𝑖𝜉𝑦(𝑡)), (31) 

 
𝑑𝑁

𝑑𝑡
=

𝐼0 + 𝐼

𝑞𝑒
− (𝛾𝑚 + 𝛾𝑙 + 𝛾𝑛𝑟)𝑁 − 𝛾𝑚(𝑁 − 𝑁0)|𝐸(𝑡)|2.            (32) 

Here, 𝜉𝑥(𝑡), 𝜉𝑦(𝑡) are white noise functions uncorrelated from each other and over time. 𝐸(𝑡) is a 

complex field that defines the photon number as 𝑆(𝑡) = |𝐸(𝑡)|2. With this in mind, Eq. 3 

corresponds to the square norm of Eq. 31, and Eq. 4 is identical to Eq. 32. Integration over of Eqs. 

(31,32) over the time interval [𝑡𝑛, 𝑡𝑛+1] leads to, 

 

𝐸𝑛+1 − 𝐸𝑛 =
1 − 𝑖

2
∫ (𝛾𝑚(𝑁𝑛 − 𝑁0) −

1

𝜏𝑝
) 𝐸 𝑑𝑡

𝑡𝑛+1

𝑡𝑛

+ ∫ √
1

2
𝛾𝑚𝑁

𝑡𝑛+1

𝑡𝑛

(𝑑𝑊𝑥 + 𝑖𝑑𝑊𝑦), 

(33) 

 

𝑁𝑛+1 − 𝑁𝑛 = ∫ (
𝐼0 + 𝐼

𝑞𝑒
− (𝛾𝑚 + 𝛾𝑙 + 𝛾𝑛𝑟)𝑁

𝑡𝑛+1

𝑡𝑛

− 𝛾𝑚(𝑁 − 𝑁0)𝑆) 𝑑𝑡.                              

(34) 

where 𝑊𝑥(𝑡), 𝑊𝑦(𝑡) are uncorrelated Wiener processes. In order to approximate the integrals in 

Eq. 33, 𝑁(𝑡) is approximated as 𝑁𝑛 and 𝐸(𝑡) is approximated as the secant line connecting 𝐸𝑛 and 

𝐸𝑛+1, 



Tutorial – Neuromorphic system simulator free-software  
 

ChipAI – 828841  18 

 

 𝐸𝑛+1 − 𝐸𝑛 ≈
1 − 𝑖

2
(𝛾𝑚(𝑁𝑛 − 𝑁0) −

1

𝜏𝑝
)

𝐸𝑛 + 𝐸𝑛+1

2
Δ𝑡 + √

1

2
𝛾𝑚𝑁𝑛(Δ𝑊𝑥

𝑛 + 𝑖Δ𝑊𝑦
𝑛). (35) 

where Δ𝑊𝑥
𝑛, Δ𝑊𝑦

𝑛~Norm(0, Δ𝑡). This allows for an approachable, recursive derivation of 𝐸𝑛+1, 

 𝐸𝑛+1 =
1

1 − 𝑀𝑛
((1 + 𝑀𝑛)𝐸𝑛 + √

1

2
𝛾𝑚𝑁𝑛(Δ𝑊𝑥

𝑛 + 𝑖Δ𝑊𝑦
𝑛)), (36) 

where 𝑀𝑛 =
1 − 𝑖

4
(𝛾𝑚(𝑁𝑛 − 𝑁0) −

1

𝜏𝑝
) Δ𝑡.  Finally,  𝑆𝑛 = |𝐸𝑛|2 for all 𝑛. 

In order to calculate the integral in Eq. 34, 𝐼(𝑡) and 𝑆(𝑡) are approximated as 𝐼𝑛+1 (already 

calculated in subsection 3.1.1) and 𝑆𝑛+1 (already calculated above), while 𝑁(𝑡) is approximated 

as the secant line connecting 𝑁𝑛 and 𝑁𝑛+1, 

𝑁𝑛+1 − 𝑁𝑛 = (
𝐼0 + 𝐼𝑛+1

𝑞𝑒
+ (𝛾𝑚 + 𝛾𝑙 + 𝛾𝑛𝑟)

1

2
(𝑁𝑛 + 𝑁𝑛+1) − 𝛾𝑚 (

1

2
(𝑁𝑛 + 𝑁𝑛+1) − 𝑁0) 𝑆𝑛+1) Δ𝑡. 

This allows for an approachable, recursive derivation of 𝑁𝑛+1, 

 𝑁𝑛+1 =
1

1 + �̃�𝑛

((1 − �̃�𝑛)𝑁𝑛 + (
𝐼0 + 𝐼𝑛+1

𝑞𝑒
+ 𝛾𝑚𝑁0𝑆𝑛+1) Δ𝑡), (37) 

where �̃�𝑛 =
1

2
(𝛾𝑚 + 𝛾𝑙 + 𝛾𝑛𝑟(1 + 𝑆𝑛+1))Δ𝑡. The initial conditions (n = 0) in the app integration 

algorithm are set at the equilibrium fixed point, which is found by substitution of all time-

derivatives and noise in Eqs. (3,4) with zero, and substitution of 𝐼 with the starting point chosen 

at subsection 3.1.1, 

 (𝛾𝑚(𝑁 − 𝑁0) −
1

𝜏𝑝
) 𝑆 + 𝛾𝑚𝑁 = 0, 

(38) 

 
𝐼0 + 𝐼

𝑞𝑒
− (𝛾𝑚 + 𝛾𝑙 + 𝛾𝑛𝑟)𝑁 − 𝛾𝑚(𝑁 − 𝑁0)𝑆 = 0. 

For parameters 𝑁0, 𝜏𝑝, 𝛾𝑚, 𝛾𝑙 , 𝛾𝑛𝑟 > 0, the nonlinear system of Eqs. 38 has always two solutions 

accounting for one stable and one unstable fixed point. The stable fixed point is chosen as the 

starting point for the numerical integration algorithm. 

3.1.3 Integrated optoelectronic neuron (algorithm outline) 

The integrator algorithm in the Neuromorphic Transmitter Node App can run simulations on Eqs. 

(1-4) concurrently (it should be repeated here that simulations with identical parameters and 

initial conditions will return non-identical outputs given the intrinsic noise in the system). The 

user can choose the specifications of the RTD and LD, as well as the voltage and current bias. The 
modulation voltage 𝑉𝑚(𝑡) is a train of square voltage pulses and the user can also choose its 

features (amplitude, period, number of cycles, phase and pulse length). Finally, the user can also 

choose the number of realizations to be simulated in parallel. The algorithm returns the output 

variables 𝑉, 𝐼, 𝑆, 𝑁 as matrices, where the rows represent evolution over time and columns 

represent multiple realizations. The initial conditions are set at equilibrium, according to Eqs. 

(30,38). The time step Δ𝑡 is set as Δ𝑡 = 0.01 × min(√𝐿𝐶, 𝜏𝑝). 
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The integrator algorithm consists of a loop where new rows 𝑉𝑛+1, 𝐼𝑛+1, 𝑆𝑛+1, 𝑁𝑛+1 are computed 

in terms of the previous rows 𝑉𝑛, 𝐼𝑛, 𝑆𝑛, 𝑁𝑛 by applying Eqs. (28,29,36,37) in element-wise row 

operations. At each step of the loop, operations are carried out in the following order: 

 Compute 𝑉𝑛+1, 𝐼𝑛+1 in terms of 𝑉𝑛, 𝐼𝑛 according to Eqs. (28,29). 

 Compute 𝑆𝑛+1 in terms of 𝐸𝑛, 𝑁𝑛 according to Eq. 36. 

 Compute 𝑁𝑛+1 in terms of 𝐼𝑛+1, 𝑆𝑛+1, 𝑁𝑛 according to Eq. 37. 

 If the total time (𝑛 + 1)Δ𝑡 is multiple of 0.5 ps (more specifically, if n+1 is multiple of 
round(0.5 ps/Δ𝑡)), add the rows 𝑉𝑛+1, 𝐼𝑛+1, 𝑆𝑛+1, 𝑁𝑛+1 at the bottom of the output 

matrices 𝑉, 𝐼, 𝑆, 𝑁. 

3.2 Integration method in the neuromorphic Tx-Rx network 

The two-node network is modelled by Eqs. (6-13). Eqs. (6-9) account for the Tx node (TX) and 
are identical to Eqs. (1-4) accounting for the single node. Consequently, the integration methods 

are identical as well. Eqs. (10-13) account for the Rx node and the only differences with Eqs. (1-

4) are in that the modulation voltage term 𝑉𝑚(𝑡) is not present in the I-equation and that there is 

an additional 𝜅𝑆1(𝑡) current term in the V-equation. 

Just like the integration algorithm in the single node app (subsection 3.1.3), the integration 

algorithm here receives the user’s specifications on the RTD and LD (voltage and current bias), 
and on the train of square voltage pulses 𝑉𝑚(𝑡) that drives the Tx as well as the number of 

realizations to be simulated in parallel. The algorithm returns matrices accounting for the 

variables 𝑉1, 𝐼1, 𝑆1, 𝑁1, 𝑉2, 𝐼2, 𝑆2, 𝑁2. The rows correspond to the evolution of the variables over 

time and the columns account for multiple realizations of the simulation. The initial conditions (n 

= 0) are set at equilibrium, given by Eqs. (30,38). The simulation time step Δ𝑡 is set as Δ𝑡 = 0.01 ×

min(√𝐿𝐶, 𝜏𝑝). 

The algorithm consists of a loop where a new row for the output matrices is computed in terms 

of the previous rows. These computations are carried out via element-wise row operations, like 

in the single node app (subsection 3.1.3). Each iteration of the loop includes the following 

operations: 

 Compute 𝑉1
𝑛+1, 𝐼1

𝑛+1 in terms of 𝑉1
𝑛, 𝐼1

𝑛. First, define, 

 𝑎1
𝑛 = −𝐶 −

1

2
𝑓′(𝑉1

𝑛)Δ𝑡, 𝑏1
𝑛 =

1

2
Δ𝑡, 𝑐1

𝑛 = − 
1

2
Δ𝑡, 𝑑1

𝑛 = − 
1

2
𝑅Δ𝑡, 

 

 

 𝜀1
𝑛 = −𝐶𝑉1

𝑛 + (𝑓(𝑉𝑛) −
1

2
(𝑓′(𝑉1

𝑛)𝑉1
𝑛 + 𝐼1

𝑛)) Δ𝑡 − 𝜎Δ𝑊𝑉1
𝑛 , 

 𝜑2
𝑛 = −𝐿𝐼1

𝑛 + (
1

2
(𝑉1

𝑛 + 𝑅𝐼1
𝑛 − (𝑉𝑚

𝑛 + 𝑉𝑚
𝑛+1)) − 𝑉0) Δ𝑡. 

Then, compute, 

𝑉1
𝑛+1 =

𝑑1
𝑛𝜀1

𝑛 − 𝑏1
𝑛𝜑1

𝑛

𝑎1
𝑛𝑏1

𝑛 − 𝑐1
𝑛𝑑1

𝑛 , 𝐼1
𝑛+1 =

−𝑐1
𝑛𝜀1

𝑛 + 𝑎1
𝑛𝜑1

𝑛

𝑎1
𝑛𝑏1

𝑛 − 𝑐1
𝑛𝑑1

𝑛 . 

 Compute 𝑆1
𝑛+1 in terms of 𝐸1

𝑛, 𝑁1
𝑛. 

First, define 𝑀1
𝑛 =

1 − 𝑖

4
(𝛾𝑚(𝑁1

𝑛+1 − 𝑁0) −
1

𝜏𝑝
) Δ𝑡. 

Next, compute 𝐸1
𝑛+1 =

1

1 − 𝑀1
𝑛 ((1 + 𝑀1

𝑛)𝐸1
𝑛 + √

1

2
𝛾𝑚𝑁1

𝑛(Δ𝑊𝑥1
𝑛 + 𝑖Δ𝑊𝑦1

𝑛 )). 
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Finally, compute 𝑆1
𝑛+1 = |𝐸1

𝑛+1|
2

. 

 Compute 𝑁1
𝑛+1 in terms of 𝐼1

𝑛+1, 𝑆1
𝑛+1, 𝑁1

𝑛. 

First define �̃�1
𝑛 =

1

2
(𝛾𝑚 + 𝛾𝑙 + 𝛾𝑛𝑟(1 + 𝑆1

𝑛+1)) Δ𝑡. 

Next, compute 𝑁1
𝑛+1 =

1

1 + �̃�1
𝑛 ((1 − �̃�1

𝑛)𝑁1
𝑛 + (

𝐼0 + 𝐼1
𝑛+1

𝑞𝑒
+ 𝛾𝑚𝑁0𝑆1

𝑛+1) Δ𝑡). 

 Compute 𝑉2
𝑛+1, 𝐼2

𝑛+1 in terms of 𝑆1
𝑛+1, 𝑉2

𝑛, 𝐼2
𝑛. First, define, 

 𝑎2
𝑛 = −𝐶 −

1

2
𝑓′(𝑉2

𝑛)Δ𝑡, 𝑏2
𝑛 =

1

2
Δ𝑡, 𝑐2

𝑛 = − 
1

2
Δ𝑡, 𝑑2

𝑛 = − 
1

2
𝑅Δ𝑡, 

 

 

 𝜀2
𝑛 = −𝐶𝑉2

𝑛 + (𝑓(𝑉2) −
1

2
(𝑓′(𝑉2

𝑛)𝑉2
𝑛 + 𝐼2

𝑛) + 𝜅𝑆1
𝑛+1) Δ𝑡 − 𝜎Δ𝑊𝑉2

𝑛 , 

 𝜑2
𝑛 = −𝐿𝐼2

𝑛 + (
1

2
(𝑉2

𝑛 + 𝑅𝐼2
𝑛) − 𝑉0) Δ𝑡. 

Then, compute, 

𝑉2
𝑛+1 =

𝑑2
𝑛𝜀2

𝑛 − 𝑏2
𝑛𝜑2

𝑛

𝑎2
𝑛𝑏2

𝑛 − 𝑐2
𝑛𝑑2

𝑛 , 𝐼2
𝑛+1 =

−𝑐2
𝑛𝜀2

𝑛 + 𝑎2
𝑛𝜑2

𝑛

𝑎2
𝑛𝑏2

𝑛 − 𝑐2
𝑛𝑑2

𝑛 . 

 Compute 𝑆2
𝑛+1 in terms of 𝐸2

𝑛, 𝑁2
𝑛. 

First, define 𝑀2
𝑛 =

1 − 𝑖

4
(𝛾𝑚(𝑁2

𝑛+1 − 𝑁0) −
1

𝜏𝑝
) Δ𝑡. 

Next, compute 𝐸2
𝑛+1 =

1

1 − 𝑀2
𝑛 ((1 + 𝑀2

𝑛)𝐸2
𝑛 + √

1

2
𝛾𝑚𝑁2

𝑛(Δ𝑊𝑥2
𝑛 + 𝑖Δ𝑊𝑦2

𝑛 )). 

Finally, compute 𝑆2
𝑛+1 = |𝐸2

𝑛+1|
2

. 

 Compute 𝑁2
𝑛+1 in terms of 𝐼2

𝑛+1, 𝑆2
𝑛+1, 𝑁2

𝑛. 

First define �̃�2
𝑛 =

1

2
(𝛾𝑚 + 𝛾𝑙 + 𝛾𝑛𝑟(1 + 𝑆2

𝑛+1)) Δ𝑡. 

Next, compute  𝑁2
𝑛+1 =

1

1 + �̃�2
𝑛 ((1 − �̃�2

𝑛)𝑁2
𝑛 + (

𝐼0 + 𝐼2
𝑛+1

𝑞𝑒
+ 𝛾𝑚𝑁0𝑆2

𝑛+1) Δ𝑡). 

 If the total time (𝑛 + 1)Δ𝑡 is multiple of 0.5 ps (more specifically, if n+1 is multiple of 

round(0.5 ps/Δ𝑡)), add the rows 𝑉1
𝑛+1, 𝐼1

𝑛+1, 𝑆1
𝑛+1, 𝑁1

𝑛+1, 𝑉2
𝑛+1, 𝐼2

𝑛+1, 𝑆2
𝑛+1, 𝑁2

𝑛+1 at the 

bottom of the output matrices. 

It is worth emphasizing that the Wiener processes are represented by uncorrelated random 

variables with normal distribution of mean value zero and variance Δ𝑡, i.e., Δ𝑊𝑘
𝑛~Norm(0, Δ𝑡). 

3.3 Integration in the Tx-Rx network with bidirectional communication 

The two-node network with a delay line is covered in section 2.3 and its dynamics are described 

by Eqs. (14-21). These are almost identical to Eqs. (6-13) except for the delay term 𝜅𝑆2(𝑡 − 𝜏) in 

Eq. 14. In the integration algorithm for this app, the external modulation voltage term 𝑉𝑚(𝑡) is a 

single square pulse instead of a train of pulses, given that a single pulse together with the delay 

line ensure periodical emission of pulses (spikes) in the system. There are no other differences 
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with the integration algorithm covered in section 3.2. Multiple realizations of the simulation can 

be run simultaneously as specified by the user. The algorithm returns matrices accounting for the 

variables 𝑉1, 𝐼1, 𝑆1, 𝑁1, 𝑉2, 𝐼2, 𝑆2, 𝑁2. The rows correspond to the evolution of the variables over 

time and the columns account for multiple realizations of the simulation. The initial conditions (n 

= 0) are set at equilibrium, and  the time step is set as  Δ𝑡 = 0.01 × min(√𝐿𝐶, 𝜏𝑝). 

The delay term is only present in the computation of  𝑉1
𝑛+1, 𝐼1

𝑛+1. At every step of the algorithm 

loop, a delay coefficient is defined as 𝑛𝑑𝑒𝑙 = max(0, 𝑛 − round(𝜏/Δ𝑡)). Then, the delayed optical 

output from the receiver LD is computed as 𝜅𝑆2
𝑛𝑑𝑒𝑙  and added into the computation of 𝜀1

𝑛, 

 𝑎1
𝑛 = −𝐶 −

1

2
𝑓′(𝑉1

𝑛)Δ𝑡, 𝑏1
𝑛 =

1

2
Δ𝑡, 𝑐1

𝑛 = − 
1

2
Δ𝑡, 𝑑1

𝑛 = − 
1

2
𝑅Δ𝑡, 

 

 

 𝜀1
𝑛 = −𝐶𝑉1

𝑛 + (𝑓(𝑉𝑛) −
1

2
(𝑓′(𝑉1

𝑛)𝑉1
𝑛 + 𝐼1

𝑛) + 𝜅𝑆2
𝑛𝑑𝑒𝑙) Δ𝑡 − 𝜎Δ𝑊𝑉1

𝑛 , 

 𝜑2
𝑛 = −𝐿𝐼1

𝑛 + (
1

2
(𝑉1

𝑛 + 𝑅𝐼1
𝑛 − (𝑉𝑚

𝑛 + 𝑉𝑚
𝑛+1)) − 𝑉0) Δ𝑡. 

Next, 𝑉1
𝑛+1, 𝐼1

𝑛+1 are computed like in section 3.2, 

𝑉1
𝑛+1 =

𝑑1
𝑛𝜀1

𝑛 − 𝑏1
𝑛𝜑1

𝑛

𝑎1
𝑛𝑏1

𝑛 − 𝑐1
𝑛𝑑1

𝑛 , 𝐼1
𝑛+1 =

−𝑐1
𝑛𝜀1

𝑛 + 𝑎1
𝑛𝜑1

𝑛

𝑎1
𝑛𝑏1

𝑛 − 𝑐1
𝑛𝑑1

𝑛 . 

The rest of the computations are exactly like in section 3.2. If the total time (𝑛 + 1)Δ𝑡 is multiple 

of 0.5 ps (more specifically, if n+1 is multiple of round(0.5 ps/Δ𝑡)), the rows 

𝑉1
𝑛+1, 𝐼1

𝑛+1, 𝑆1
𝑛+1, 𝑁1

𝑛+1, 𝑉2
𝑛+1, 𝐼2

𝑛+1, 𝑆2
𝑛+1, 𝑁2

𝑛+1 are added at the bottom of the output matrices. 
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4. Neuromorphic system simulator apps 

Three apps with graphical user interfaces (GUI) have been programmed intending to reproduce 

the dynamics of a single optoelectronic node, a two-node integrated network and a two-node 

integrated network with bidirectional communication, respectively. The three aps have been 

coded on MATLAB™ and their GUIs have been designed on MATLAB GUIDE™. The standalone 

versions of the apps have been compiled with MATLAB Compiler™. The standalone apps require 

MATLAB™ and MATLAB Runtime™ installed on a computer to run (although MATLAB™ is not 

required to be running). 

In 2016, MathWorks® released MATLAB AppDesigner™, a more modern platform to code and 

design GUIs. Apps coded on AppDesigner™ can be compiled as web apps with MATLAB Web App 

compiler™. Web apps are run directly on a browser and can be included on a website as long as 

the server has MATLAB Web App Server™ installed. MathWorks® is intending to discontinue 

MATLAB GUIDE™ in favour of MATLAB App Designer™. To this day, however, apps coded on 

MATLAB AppDesigner™ have a tendency to glitch when executed on some versions of Linux™. 

Migration strategies have already been developed in order to continue the work on the 

neuromorphic simulator apps with MATLAB AppDesigner™ and compile standalone and web 

apps. 

4.1 Neuromorphic transmitter node simulator app 

Fig. 14 shows a screenshot of the single RTD-LD node simulator app. The GUI dimensions are 

1250 × 818 pixels. The user can tune the specifications for the simulations by filling the edit fields 

and choosing options from the pop-up menus at the left side of the GUI. 

The “I-V characteristic” pop-up menu (Fig. 14a) allows to choose the RTD current-voltage 
characteristic, 𝑓(𝑉). At the moment, there are 3 characteristics available: “Smooth curve” to 

choose the smooth curve defined in subsection 2.1.1 (see Fig. 1a and Table 1a), “Sharp curve” to 

choose the sharp curve defined in subsection 2.1.1 (see Fig. 1b and Table 1b), and “Sharp curve 

(R)” to choose a rescaled sharp curve where the distance between the peak and valley points (i.e, 

𝑉𝑣 − 𝑉𝑝 and 𝐼𝑝 − 𝐼𝑣) is the same as in the smooth curve. 

Under the “I-V characteristic” pop-up menu there are four edit fields to choose the parameters in 

the electrical part of the system (Fig. 14b); the circuit’s intrinsic resistance (R), capacitance (C) 

and inductance (L) as well as the noise intensity in voltage units, which is related to the actual 

noise intensity as 𝜎 = 𝐶3/4𝐿−1/4𝑉noise. 

At the right side of these fields, there are the options to choose the input bias voltage, 𝑉0 (Fig. 14c). 

A pop-up menu allows to set the bias either manually or outside the NDC region, close to the peak 

or close to the valley of the I-V characteristic. If the “set by user” choice is selected, the user can 

set 𝑉0 manually in the edit field under the pop-up menu. If either the “close to peak” or “close to 

valley” choice is selected, 𝑉0 is computed in order to have the intersection between the nullclines 
outside the NDC region, at a distance 0.2(𝑉𝑣 − 𝑉𝑝) from it, and the edit field is automatically filled. 

Below the RTD parameters edit fields, a pop-menu (Fig. 14d) allows to set the LD specifications, 

i.e., the parameters 𝑁0, 𝜏𝑝, 𝛾𝑙 , 𝛾𝑚, 𝛾𝑛𝑟. Right now there is only one option available, “Nanolaser”, 

which assigns the values detailed in subsection 2.1.2. We plan to add more choices in the future. 

Under the pop-up menu, there is an edit field to choose the LD bias current, 𝐼0 (Fig. 14e). 

In the app simulation, the input modulation voltage 𝑉𝑚(𝑡) is a train of voltage pulses. Under the 

bias current edit field, there are more edit fields (Fig. 14f) to customize this train in terms of  

amplitude (which can be positive or negative, accounting for positive or negative pulses), period, 
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phase, pulse length and number of cycles (and hence the total time of simulation). The 

“Realizations” edit field (Fig. 14g) permits to choose the number of simulations to be run in 

parallel (it should be noted that due to noise in the system, simulations with identical parameters 

and initial conditions will return non-identical outputs). To avoid RAM memory saturation 

and/or OS crashing, the number of cycles and repetitions are limited to 50 and 500, respectively. 

The GUI includes three action buttons (Fig. 14h); “Run”, “Abort” and “Export data”. The “Run” 

button runs a simulation of Eqs. (1-4) with the specifications given by the user (see section 3.1 

for a detailed explanation on the numerical calculations). Once the simulation is finished, the 

figures in the GUI (Fig. 14i-l) are painted and the static text at the lower left corner (Fig. 14m) 

reports the elapsed time. A simulation may take between a few seconds up to several minutes, 

depending on the parameters, total time, number of repetitions and the machine the app is being 

run on. It is recommended to run some 1-realization simulations before running multiple 

simulation realizations to have an understanding on the system dynamics and how it is affected 

by the parameters. 

The “Abort” button is enabled to push only when a simulation is in progress, in order to interrupt 

it. After pushing the button, the static text at the lower left corner (Fig. 14m) reports that the 

simulation has been aborted. 

 

Fig. 14. Screenshot of the ChipAI Tx Neuromorphic Node simulator app. (a) I-V characteristic pop-up menu. 

(b) RTD parameters edit fields. (c) Input bias voltage pop-up menu and edit field. (d) LD specifications 

pop-up menu. (e) LD Input bias current edit field. (f) Input square voltage pulse edit fields. (g) Number of 

realizations edit field. (h) Action buttons. (i) RTD phase plane and nullclines. (j) LD bifurcation diagram, 

current threshold and total injected current. (k) Tx RTD output. (l) Tx LD output. (m) Informative static 

text. 

The “Export data” button opens a dialog box to save the output data; specifically, the RTD output 
current, 𝐼(𝑡), and the LD optical output power, 𝑃0𝑆(𝑡), where 𝑃0 = ℎ𝑐/𝜏𝑝𝜆0. Here, ℎ is the Planck 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(i) (j) 

(k) 

(l) 

(m) 

(h) 
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constant, 𝑐 is the speed of light 𝜏𝑝 is the photon lifetime and 𝜆0 = 1550 nm is the second window 

of opportunity for single-mode transmission. The data is saved as an XLS or XLSX file (at the user’s 

discretion) with three sheets accounting for time and the two output variables. The time sheet 

has a single column. Columns in the other two sheets account for different realizations of the 

simulations while rows account for the evolution of the variables over time. The data export 

process may take between a few seconds up to several minutes depending on the data size. The 

data export process cannot be aborted. Also, it is important to keep in mind that most OSs do not 

allow data to be saved if the number of rows or columns exceeds a certain limit. 

The figure at the top and centre of the GUI (Fig. 14i) illustrates the RTD phase plane. It is entitled 

“RTD phase plane”. This figure shows the RTD I-V characteristic (cyan line), the circuit’s load line 

(yellow line) and the variables (𝑉(𝑡), 𝐼(𝑡)) returned from the simulation (blue dots). 

The figure at the upper right corner of the GUI (Fig. 14j) is entitled “Nanolaser/LED bifurcation 

diagram”. It includes a bifurcation diagram of the LD dynamics; specifically, the mean value of the 

optical output power as a function of the total current injected into the LD, 𝐼 + 𝐼0 (solid red line). 

The current emission threshold is also included (dashed red line). On the same figure, the total 

current injected is plotted over time (solid blue line). If multiple realizations are simulated, the 

ensemble average is plotted. The idea is to give the user an intuition of where the rest value of the 

total current injected is relative to the current emission threshold and at what moments the 

threshold is crossed. 

The two figures at the lower half of the GUI (Fig. 14k,l) are entitled “Transmitter RTD” and 
“Transmitter Nanolaser/LED”. They show the RTD output current, 𝐼(𝑡), and the LD output power, 

𝑃0𝑆(𝑡) over time as blue and red curves, respectively. If multiple realizations are simulated, the 

curves will have a degree of transparency (alpha channel). The “Transmitter RTD” figure also 

includes the input voltage, 𝑉0 + 𝑉𝑚(𝑡), as a green line, with its axis drawn at the right side of the 

figure. This allows the user to have a notion on how long the RTD and the LD take to respond to 

the external stimulus. 

Finally, the static text at the lower left corner of the GUI (Fig. 14m) informs the user when a 

simulation is running, data is being exported and the outcome and elapsed time of both actions 

once they finish. This text also informs when the user aborts a simulation, the user mistakenly 

inputs prohibited parameters (e.g., negative resistance, non-natural number of repetitions, 

infinity, NaN, etc.) or when an error occurs. In the latter cases, the static text is coloured in red. 

Examples of simulations performed by the app are shown in Figs. 15 and 16. This time, the smooth 

curve is chosen. Fig. 15 shows the Tx response with the RTD biased close to the valley of the I-V 

characteristic, the LD biased below its threshold current, and the RTD perturbed with a train of 

suprathreshold negative voltage pulses. The pulses elicit excitable current spikes from the RTD. 

The rest value of the RTD output current is slightly under the LD emission threshold (𝐼𝑡ℎ = 337.54 

µA). When a spike is injected into the LD, the current increases up to 700 µA and the LD emits a 

light pulse. Fig. 16 shows the transmitter’s response with the RTD biased close to the peak of the 

I-V characteristic, the LD biased over the current emission threshold, and the RTD perturbed with 

a train of suprathreshold positive voltage pulses. The rest value of the total current injected into 

the LD (𝐼 − 𝐼0) is about 500 µA. Since this current is above the emission threshold, the LD is 

permanently emitting light. The voltage pulses elicit excitable current negative spikes from the 

RTD. When these spikes are injected into the LD, 𝐼 − 𝐼0 descends from its rest value down to 150 

µA, thus crossing the threshold and momentarily stopping the LD emission. This is a valid way to 

transmit bits of information in the form of negative optical pulses, albeit at a high energy cost. In 

both configurations, the period of the voltage pulse train is set at 0.5 ns, significantly longer than 
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the optical pulse FWHM as well as the excitable response refractory time (about 0.5 ns), in order 

to ensure that the system’s response to each perturbation will not be affected by prior ones. 

   

   

4.2 Neuromorphic transmitter-receiver network simulator app 

Fig. 17 shows a screenshot of the two-node network app. It is quite similar to the single node app 

detailed in section 4.1, but it has additional figures accounting for the Rx output variables. The 

GUI dimensions are 1650 × 868 pixels. 

The left side of the GUI has some edit fields and pop-up menus for the user to set the specifications 

and parameters for simulation. The pop-up menu at the upper left corner of the GUI allows to 

choose the RTD I-V characteristic (Fig. 17a). There are currently three options available: smooth 

curve, sharp curve and rescaled sharp curve just like with the single node app. Under this menu 

there are four edit fields to enter the values of the RTD circuit parameters, both at the Tx and Rx: 

resistance, inductance, capacitance and noise intensity in voltage units (Fig. 17b). Under these 

fields, there is a pop-up menu to choose the input bias voltage either close to the peak, close to 

the valley or specified manually in the edit field right below (Fig. 17c). Next, there is a pop-up 

menu to choose the specifications for the Tx LD and Rx LD, (Fig. 17d). There is a single option 

available at the moment: “Nanolaser”, which assigns values to the LD parameters as given in 

subsection 2.1.2. Under this menu, there is an edit field to enter the input bias current injected 

into both LDs, 𝐼0 (Fig. 17d), and another edit field to enter the Tx PD conversion factor, 𝜅 (Fig. 

17e). At the lower left part of the GUI, there are the edit fields to enter the specifications for the 
input train of square voltage pulses, 𝑉𝑚(𝑡), including amplitude (which can be positive or 

negative), period, phase, pulse length and number of cycles (Fig. 17f), as well as an additional edit 

field to enter the number of realizations (i.e., simulations to be run in parallel, Fig. 17g). To avoid 

RAM memory saturation and/or OS crashing, the number of cycles and number of repetitions are 

limited to 50 and 500, respectively. 

At the right side of the “Realizations” edit field, there are three action buttons to run a simulation, 

abort a simulation in progress or export data from an already complete simulation (Fig. 17h). The 

time a simulation might take will depend on the specifications given by the user as well as the 

machine the app is running on. In general, it will take twice as long a simulation in the single node 

app under similar specifications, since the app detailed here accounts for two nodes in sequence, 

with twice the number of equations. The same applies for the amount of time exporting data may 

take, which may ascend up to several minutes. Data exportation in progress cannot be aborted. 

Above the three action buttons, there are two figures providing information about the RTDs and 

LDs, respectively. The upper figure (Fig. 17i) is entitled “RTD phase plane” and shows the RTD I-

V characteristic, the load line and the electrical output from the Tx RTD, (𝑉1(𝑡), 𝐼1(𝑡)), as well as 

Fig. 15. 100 Simulations of Eqs. (1-4) run by the 

single node app, with 𝐼0 = 0 µA, 𝑉0 = 685 mV, 

𝑉noise = 5 mV, smooth current-voltage characte-

ristic and modulated with a train of 50 ps long, 100 

mV deep and 2 ns period negative voltage pulses. 

Fig. 16. 100 Simulations of Eqs. (1-4) run by the 

single node app, with 𝐼0 = −200 µA, 𝑉0 = 572 mV, 

𝑉noise = 5 mV, smooth current-voltage characte-

ristic and modulated with a train of 50 ps long, 100 

mV high and 2 ns period positive voltage pulses. 
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the Rx RTD (𝑉2(𝑡), 𝐼2(𝑡)), shown as light and dark blue dots, respectively. The lower figure (Fig. 

17j) is entitled “Nanolaser/LED bifurcation diagram” and includes a plot of the mean optical 

power as a function of the total current injected into the Tx LD or Rx LD (𝐼1 + 𝐼0 and 𝐼2 + 𝐼0, 

respectively), together with the current emission threshold. The figure also includes a plot of the 

aforementioned total currents over time (light and dark blue lines accounting for the Rx LD and 

Tx LD), in order to provide some intuition on where the rest values of the total currents are 

relative to the lasing threshold, and when the threshold is crossed to trigger or supress light 

emission. 

At the right side of the GUI there are four figures summarizing the evolution of the output 
variables over time. The top figure (Fig. 17k) shows the Tx RTD output current (𝐼1(𝑡)) together 

with its total input voltage (𝑉0 + 𝑉𝑚(𝑡)), with the corresponding vertical axes traced at the left 

and right side of the figure, respectively. In the second figure, the Tx LD output power (𝑃0𝑆1(𝑡)) 

and the Rx PD input current (𝜅𝑆1(𝑡)) are plotted together, with the corresponding axes shown at 

the left and right side of the figure. Note that these two variables are actually the same, measured 

in power and current units. The third figure (Fig. 17m) shows the Tx RTD output current (𝐼2(𝑡)). 

The bottom figure (Fig. 17n) shows the Rx LD optical output in power units (𝑃0𝑆2(𝑡)). The power 

coefficient is given by 𝑃0 = ℎ𝑐/𝜏𝑝𝜆0. Here, ℎ is the Planck constant, 𝑐 is the speed of light 𝜏𝑝 is the 

photon lifetime and 𝜆0 = 1550 nm is the second window of opportunity for single-mode 

transmission. 

 

Fig. 17. Screenshot of the ChipAI Tx-Rx Neuromorphic Network simulator app. (a) I-V characteristic pop-

up menu. (b) RTD parameters edit fields. (c) Input bias voltage pop-up menu and edit field. (d) LD 

specifications pop-up menu and LD Input bias current edit field. (e) Tx PD conversion factor edit field. (f) 

Input square voltage pulse edit fields. (g) Number of realizations edit field. (h) Action buttons. (i) RTD 

phase plane and nullclines. (j) LD bifurcation diagram, threshold and total injected currents. (k) Tx RTD 

output. (l) Tx LD output. (m) Rx RTD and (n) LD outputs. (o) Informative static text. 

Finally, the static text at the lower left corner of the GUI (Fig. 17o) informs the user when a 

simulation is running, data is being exported and the outcome and elapsed time of both actions 

once they finish. This text also informs when the user aborts a simulation, the user mistakenly 

inputs prohibited parameters (e.g., negative resistance, non-natural number of repetitions, 

infinity, NaN, etc.) or when an error occurs. In the latter cases, the static text is coloured in red. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) (h) 

(i) 

(j) 

(k) 

(l) 

(m) 

(n) 

(o) 
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An example of the performance of the two-node app is visualized in Fig. 18, where a simulation is 

carried out with the same specifications as in Fig. 15. This shows that the optical pulses generated 

by the Tx node are successfully propagated by the Rx node when the smooth RTD I-V 

characteristic is selected. 

 

Fig. 18. 100 Simulations of Eqs. (6-13) run by the two-node app, with 𝐼0 = 0 µA, 𝑉0 = 685 mV, 𝑉noise = 5 

mV, 𝜅 = 0.05 µA, smooth current-voltage characteristic and modulated with a train of 50 ps long, 100 mV 

deep and 2 ns period negative voltage pulses 

4.3 Transmitter-receiver with bidirectional communication simulator app 

Since the equations that model the two-node network with and without delay line are almost 

identical, so are the corresponding simulator apps. The GUI for the app with delay line is shown 

in Fig. 19. It has the same size (1605 × 868 pixels), figures and action buttons as the app without 

delay line. At the left side of the GUI, there are the pop-up menus to enter the simulation 
parameters (Fig. 19a). In the app with delay line, the input voltage 𝑉𝑚(𝑡) is a single square pulse 

instead of a train of pulses, since the delay line ensures that optical pulses will be generated 

periodically. Therefore, the “Period” edit field is not present anymore. Instead, the app has a 

“Delay” edit field to enter the delay time, 𝜏. The “Cycles” edit field accounts for the number of 

times the delay time is repeated (i.e., the simulation total time will be 𝑁cycles𝜏). Like in the previous 

apps, multiple simulations can be run in parallel, specified by the “Realizations” edit field. 
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Fig. 19. Screenshot of the ChipAI simulator app accounting for the Tx-Rx Neuromorphic Network with 

bidirectional communication. (a) Pop-up menus and edit fields to specify the simulation parameters. (b) 

Action buttons. (c) RTD phase plane and nullclines. (d) LD bifurcation diagram, threshold and total injected 

currents. (e) Tx RTD and (f) LD outputs. (g) Rx RTD and (h) LD outputs. (i) Informative static text. 

As in the previous apps covered in sections 4.1 and 4.2, the two-node app with delay line has three 

action buttons to run a simulation under the specifications provided by the user, abort a 

simulation in progress and export data from the last simulation (Fig. 19b). The time a simulation 

might take will depend on the simulation parameters, but in general it takes longer than a 

simulation run by the two-node app without delay line with similar specifications (about twice 

longer), since the delay term 𝜅𝑆1(𝑡 − 𝜏) requires saving 𝑆1
𝑛 at every step of the simulation and not 

only every 0.5 ps like the other variables and like in the other apps (see chapter 3). 

The two-node app includes the same figures as its counterpart without delay line, illustrating the 

RTD phase plane (Fig. 19c), LD bifurcation diagram (Fig. 19d) and electrical and optical, Tx and 

Rx output variables over time (Fig. 19e-h). The optical output variables are plotted in both power 

and current units (the latter referring to the Tx and Rx output PD currents). 

Finally, the static text at the lower left corner of the GUI (Fig. 17i) informs the user when a 

simulation is running, data is being exported and the outcome and elapsed time of both actions 

once they finish. This text also informs when the user aborts a simulation, the user mistakenly 

inputs prohibited parameters (e.g., negative resistance, non-natural number of repetitions, 

infinity, NaN, etc.) or when an error occurs. In the latter cases, the static text is coloured in red. 

An example of the performance of the app is visualized in Fig. 20, where a simulation is carried 

out with the same specifications as in Fig. 18 and a delay time 𝜏 = 2 ns. A single negative voltage 

pulse successfully elicits periodic emission of optical pulses, as already explained in section 2.3 

(see Figs. 12 and 13), although the smooth curve is used here instead of the sharp curve. Note that 

the pulse emission period is slightly longer than 2 ns, given the intrinsic delays in the responses 

of every component of the circuit. Also, as new pulses are generated, the response loses 

coherence, in the sense that, as multiple simulations are run under the same parameters, the exact 

times when pulses are emitted are not identical, as a consequence of the system’s intrinsic noise. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 
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Fig. 20. 100 Simulations of Eqs. (14-21) run by the two-node app, with 𝐼0 = 0 µA, 𝑉0 = 685 mV, 𝑉noise = 5 

mV, 𝜅 = 0.05 µA, 𝜏 = 2 ns, smooth current-voltage characteristic and injected with a single 50 ps long, 100 

mV deep negative voltage pulse. 
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5. Summary and conclusions 

In this document, three graphical applications under development as part of the ChipAI Project 

have been presented. These apps simulate excitable spike generation and propagation as well as 

other responses in optoelectronic, neuromorphic, nanoscale devices based on resonant 

tunnelling diodes (RTD) and laser diodes (LD). The three apps account for a single neuromorphic 

node consisting of an RTD and an LD, a network made of two neuromorphic nodes connected via 

a photodetector (PD) and the same two-node network additionally connected with a delay line in 

the reverse direction. The apps are programmed in MATLAB GUIDE™. 

The theoretical models of the simulations are based on are discussed in detail, including the 

parameters involved. It is explained that a single node behaves as an excitable optical pulse 

generator when the RTD is biased in the proximity to the valley of its current-voltage (I-V) 

characteristic, the LD is biased under its threshold current and a negative square voltage pulse is 

injected. Likewise, the two-node network successfully propagates the aforementioned pulses 

when both nodes follow the same configuration. If a delay line is connected in the reverse 

direction, a single voltage pulse triggers optical pulses periodically, with a period slightly longer 

than the delay time, since every component in the device has its own intrinsic response delay. The 

numerical methods internally implemented in the apps are based on semi-implicit integration, 

with the possibility of multiple simulations being run in parallel via element-wise row operations. 

This is relevant because simulations under identical parameters and initial conditions will return 

non-identical outputs, as a consequence of the intrinsic noise in the models. 

The apps’ graphical interfaces have a number of pop-up menus and edit fields where the user can 

enter the parameters and specifications for a simulation (e.g., RTD current-voltage characteristic, 

LD parameters, resistance, inductance, capacitance, delay time, specifications for the external 

modulation/perturbation, etc.), three action buttons to run a simulation, abort a simulation or 

export data as an XLS or XLSX spread sheet, and figures to summarize the simulation outcome, 

including evolution of the output variables over time, RTD phase plan and LD bifurcation diagram. 

Examples of generation and propagation of positive and negative optical spikes simulated by the 

apps are included as well. 

The apps intend to serve as a didactic tool for casual or expert users visiting the ChipAI Project 

website (https://www.chipai.eu/neuromorphic-simulator) who might be interested in getting to 

know more in depth about the dynamics in the optoelectronic neuromorphic devices under 

design and fabrication in the project. However, it may also be a valuable contribution for the 

project theoretical and experimental team members in their research. The loss of coherence (i.e., 

the capacity to respond to the same input square pulse with identical spikes triggered at identical 

times) in the excitable pulses generated in the two-node network with delay line is of significant 

interest. The loss of coherence is also a consequence of the intrinsic noise. This phenomenon can 
be studied with an equivalent model accounting for diffusion of spatiotemporal localized 

structures in a one-dimensional periodic layer [10]. In that regard, the third app can provide 

valuable feedback for the theoretical modelling. 

This work is still in progress and there are some courses of action which could be included in the 

apps to be followed in the nearby future. These include additional RTD I-V characteristics and LD 

specifications are to be included in the apps. There is currently only one LD model and only two 

RTD characteristics; a smooth curve and a sharp curve, following Schulman’s formula [12]. More 

choices to include may be the third-degree polynomial used in the FitzHugh-Nagumo model 

[7,23] and the Van Der Pol Oscillator [24], a simplified curve made of a linear function minus a 

sigmoid (which has already been studied by the project team, as demonstrated by one paper 
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published in the Chaos Journal [25]) and a piecewise linear function. Studies with PWL functions 

relevant to RTD dynamics have been carried out in the past [26]. 
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